martes, 10 de julio de 2012

http://www.youtube.com/watch?v=C5nZ3XIfQ88&NR=1&feature=endscreen

**ESPACIO MUESTRAL**

En la teoría de probabilidades, el espacio muestral o espacio de muestreo (denotado E, S, Ω o U) consiste en el conjunto de todos los posibles resultados individuales de un experimento aleatorio.
Por ejemplo, si el experimento consiste en lanzar dos monedas, el espacio de muestreo es el conjunto {(cara, cara), (cara, cruz), (cruz, cara) y (cruz, cruz)}. Un evento o suceso es cualquier subconjunto del espacio muestral, llamándose a los sucesos que contengan un único elemento sucesos elementales. En el ejemplo, el suceso "sacar cara en el primer lanzamiento", o {(cara, cara), (cara, cruz)}, estaría formado por los sucesos elementales {(cara, cara)} y {(cara, cruz)}.
Para algunos tipos de experimento puede haber dos o más espacios de muestreo posibles. Por ejemplo, cuando se toma una carta de un mazo normal de 52 cartas, una posibilidad del espacio de muestreo podría ser el número (del as al rey), mientras que otra posibilidad sería el palo (diamantes, tréboles, corazones y picas). Una descripción completa de los resultados, sin embargo, especificaría ambos valores, número y palo, y se podría construir un espacio de muestreo que describiese cada carta individual como el producto cartesiano de los dos espacios de muestreo descritos.
Los espacios de muestreo aparecen de forma natural en una aproximación elemental a la probabilidad, pero son también importantes en espacios de probabilidad. Un espacio de probabilidad (Ω, F, P) incorpora un espacio de muestreo de resultados, Ω, pero define un conjunto de sucesos de interés, la σ-álgebra F, por la cuál se define la medida de probabilidad.

**EVENTOS**

un evento o suceso es un subconjunto de un espacio muestral, es decir, un conjunto de posibles resultados que se pueden dar en un experimento aleatorio.
Formalmente, sea Ω un espacio muestral, entonces un evento es un subconjunto A:=\{w_1,w_2,...\}\subseteq\Omega, donde (w_1, w_2, ...) son una serie de posibles resultados.
Se dice que un evento A ocurre, si el resultado del experimento aleatorio es un elemento de A.

TIPOS DE EVENTOS
Evento simple o suceso elemental
Un suceso o evento simple es un subconjunto del espacio muestral que contiene un único elemento.
Ejemplos de espacios muestrales y sucesos elementales:
  • Si se trata de contar objetos y el espacio muestral S = {0, 1, 2, 3, ...} (los números naturales), entonces los sucesos elementales son cada uno de los conjuntos {k}, donde kN.
  • Si se lanza una moneda dos veces, S = {cc, cs, sc, ss}, donde (c representa "sale cara" y s, "sale cruz"), los sucesos elementales son {cc}, {cs}, {sc} y {ss}.
  • Si X es una variable aleatoria normalmente distribuida, S = (-∞, +∞), los números reales, los sucesos elementales son todos los conjuntos {x}, donde x\mathbb R.
Los sucesos elementales pueden tener probabilidades que son estrictamente mayores que cero, cero, no definidas o cualquier combinación de estas. Por ejemplo, la probabilidad de cualquier variable aleatoria discreta está determinada por las probabilidades asignadas a los sucesos elementales del experimento que determina la variable. Por otra parte, cualquier suceso elemental tiene probabilidad cero en cualquier variable aleatoria continua. Existen distribuciones mixtas que no son completamente continuas, ni completamente discretas, entre las que pueden darse ambas situaciones.

Otros sucesos

  • Un evento compuesto es un subconjunto \{w_1,...,w_n\}\subseteq\Omega.
  • Los eventos triviales son el conjunto universal Ω y el conjunto vacío. Al primero se le llama también evento seguro, y al segundo, evento imposible.
  • Sean dos eventos A y B, si ambos son conjuntos disjuntos, entonces ellos son eventos excluyentes.
  • Un evento con elementos infinitos pero numerables se llama σ-álgebra (sigma-álgebra), y un evento con elementos finitos se llama álgebra de sucesos de Boole.

**AXIOMAS Y TEOREMAS DE LA PROBABILIDAD**

Los axiomas de probabilidad son las condiciones mínimas que deben verificarse para que una función definida sobre un conjunto de sucesos determine consistentemente sus probabilidades. Fueron formulados por Kolmogórov en 1933.

Axiomas de Kolmogórov:

Primer axioma:

La probabilidad de que ocurra un evento A cualquiera se encuentra entre cero y uno.

0 £ p(A) ³ 1

Ejemplo: La probabilidad de sacar par en un dado equilibrado es 0,5. P(A)=0,5

Segundo Axioma:

La probabilidad de que ocurra el espacio muestral d debe de ser 1.

                                                           p(d) = 1

Ejemplo: La probabilidad de sacar un número del 1 al 6 en un dado equilibrado es "1".

Tercer Axioma: 

Si A y B son eventos mutuamente excluyentes, entonces la,

p(AÈB) = p(A) + p(B)

Ejemplo: La probabilidad de sacar en un dado "as" o sacar "número par" es la suma de las probabilidades individuales de dichos sucesos.

Según este axioma se puede calcular la probabilidad de un suceso compuesto de varias alternativas mutuamente excluyentes sumando las probabilidades de sus componentes.

Generalizando:

Si se tienen n eventos mutuamente excluyentes o exclusivos A1, A2, A3,.....An, entonces;

                               p(A1ÈA2È.........ÈAn) = p(A1) + p(A2) + .......+ p(An)


Ejemplo:

Para el experimento aleatorio de tirar un dado, el espacio muestral es W = {1, 2, 3, 4, 5, 6}. En este espacio el conjunto de sucesos es P(W) = {Æ, {1}, {2}, ...{1,2}, {1,3}, ...{1,2,3,4,5,6}}. Para establecer una probabilidad hay que asignar un número a todos esos sucesos.
Sin embargo si se ha asignado a los sucesos elementales p({1})= p({2})= ...= p({6})= 1/6, por la propiedad ii), p.e. la probabilidad del suceso {1, 3} es p({1,3})= p({1})+ p({3})=2/6.

Nota: El suceso {1} es: "el resultado de tirar el dado es la cara 1", el suceso {1, 3} es: "el resultado de tirar el dado es la cara 1, o la 3", el suceso {1, 3, 5} es: "el resultado de tirar el dado es una cara impar".


TEOREMAS

TEOREMA 1. Si f es un evento nulo o vacío, entonces la probabilidad de que ocurra f debe ser cero.

p(f)=0
 
  
Ejemplo : La probabilidad de que un estudiante sea mujer es "1 menos la probabilidad de que no sea varón". 

DEMOSTRACIÓN:
Si sumamos a fun evento A cualquiera, como f y A son dos eventos mutuamente excluyentes, entonces p(AfÈ)=p(A) +p(f)=p(A). LQQD

TEOREMA 2. La probabilidad del complemento de A, Ac debe ser,

p(Ac)= 1 – p(A).

DEMOSTRACIÓN:
Si el espacio muestral d, se divide en dos eventos mutuamente exclusivos, A y Ac luego d=AÈAc, por tanto p(d)=p(A) + p(Ac) y como en el axioma dos se afirma que p(d)=1, por tanto, p(Ac)= 1 - p(A) .LQQD

TEOREMA 3. Si un evento A Ì B, entonces la p(A) £ p(B).

DEMOSTRACIÓN:
Si separamos el evento B en dos eventos mutuamente excluyentes, A y B \ A (B menos A), por tanto, B=AÈ(B \ A) y p(B)=p(A) +p(B \ A), luego entonces si p(B \ A)³0 entonces se cumple que p(A)£p(B). LQQD

TEOREMA 4. La p( A \ B )= p(A) – p(AÇB)

DEMOSTRACIÓN: Si A y B son  dos eventos cualquiera, entonces el evento A se puede separar en dos eventos mutuamente excluyentes, (A \ B) y AÇB, por tanto, A=(A \ B)È(AÇB), luego p(A)=p(A \ B) + p(AÇB), entonces, p(A \ B) = p(A) – p(AÇB).  LQQD

TEOREMA 5. Para dos eventos A y B, p(AÈB)=p(A) + p(B) – p(AÇB).

DEMOSTRACIÓN:
Si AÈB = (A \ B) È B, donde (A \ B) y B son eventos mutuamente excluyentes, por lo que p(A È B) = p(A \ B) + p(B) y del teorema anterior tomamos que p(A \ B) = p(A) – p(AÇB), por tanto, p(AÈB) = p(A) + p(B) – p(AÇB).  LQQD.

**ESPACIOS FINITOS Y EQUIPARABLES** 

Sea d un espacio muestral que contiene n elementos, d = {a1, a2, a3,....,an}, si a cada uno de los elementos de d le asignamos una probabilidad igual de ocurrencia, pi = 1/n por tener n elementos d, entonces estamos transformando este espacio muestral en un espacio finito equiprobable, el que debe cumplir con las siguientes condiciones:

  1. Las probabilidades asociadas a cada uno de los elementos del espacio muestral deben ser mayores o iguales a cero, pi ³ 0.

  1. La sumatoria de las probabilidades asociadas a cada elemento del espacio muestral debe de ser igual a 1.

Spi = 1

En caso de que no se cumpla con las condiciones anteriores, entonces no se trata de un espacio finito equiprobable.
Solo en el caso de espacios finitos equiprobables, si deseamos determinar la probabilidad de que ocurra un evento A cualquiera, entonces;

            p(A) = r*1/n = r/n

p(A) = maneras de ocurrir el evento A/ Número de elementos del espacio muestral

r = maneras de que ocurra el evento A
1/n = probabilidad asociada a cada uno de los elementos del espacio muestral
n = número de elementos del espacio muestral

**PROBABILIDAD CONDICIONAL**

Es la probabilidad de que ocurra un evento A, sabiendo que también sucede otro evento B. La probabilidad condicional se escribe P(A|B), y se lee «la probabilidad de A dado B».

Interpretación
P(A \mid B) se puede interpretar como, tomando los mundos en los que B se cumple, la fracción en los que también se cumple A. Si el evento B es, por ejemplo, tener la gripe, y el evento A es tener dolor de cabeza, P(A \mid B) sería la probabilidad de tener dolor de cabeza cuando se está enfermo de gripe.
Gráficamente, si se interpreta el espacio de la ilustración como el espacio de todos los mundos posibles, A serían los mundos en los que se tiene dolor de cabeza y B el espacio en el que se tiene gripe. La zona verde de la intersección representaría los mundos en los que se tiene gripe y dolor de cabeza P(A \cap B). En este caso P(A \mid B), es decir, la probabilidad de que alguien tenga dolor de cabeza sabiendo que tiene gripe, sería la proporción de mundos con gripe y dolor de cabeza (color verde) de todos los mundos con gripe: El área verde dividida por el área de B. Como el área verde representa P(A \cap B) y el área de B representa a P(B), formalmente se tiene que:
P(A \mid B) = \frac{P(A \cap B)}{P(B)}.

**PROBABILIDAD TOTAL Y TEOREMA DE BAYES**
 

Probabilidad condicionada. Teorema de Bayes.


Diagrama en árbol, probabilidad condicionada.

**INDEPENDENCIA**

En teoría de probabilidades, se dice que dos sucesos aleatorios son independientes entre sí cuando la probabilidad de cada uno de ellos no está influida por que el otro suceso ocurra o no, es decir, cuando ambos sucesos no están correlacionados.

 Definición formal

Dos sucesos son independientes si la probabilidad de que ocurran ambos simultáneamente es igual al producto de las probabilidades de que ocurra cada uno de ellos, es decir, si P(A \cap B)=P(A)P(B)

 Motivación de la definición

Sean A y B dos sucesos tales que P(B)>0, intuitivamente A es independiente de B si la probabilidad de A condicionada por B es igual a la probabilidad de A. Es decir si:
P(A|B) \ = \ P(A)
De la propia definición de probabilidad condicionada:
P(A \mid B) = \frac{P(A \cap B)}{P(B)}.
se deduce que P(A \cap B) \ = \ P(A \mid B) P(B), y dado que P(A|B) \ = \ P(A) deducimos trivialmente que P(A \cap B) \ = \ P(A)  P(B).
Si el suceso A es independiente del suceso B, automáticamente el suceso B es independiente de A.

No tiene por qué haber una relación causal o temporal entre A y B. A puede preceder en el tiempo a B, sucederlo o pueden ocurrir simultáneamente. A puede causar B, viceversa o pueden no tener relación causal. Las relaciones causales o temporales son nociones que no pertenecen al ámbito de la probabilidad. Pueden desempeñar un papel o no dependiendo de la interpretación que se le dé a los eventos.

Dado un espacio de probabilidad (\Omega, \mathcal F, \mathbb P) y dos eventos (o sucesos) A, B\in \mathcal F con P(B)>0, la probabilidad condicional de A dado B está definida como:

P(A \mid B) = \frac{P(A \cap B)}{P(B)}.

No hay comentarios:

Publicar un comentario